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Abstract

In this thesis, we discuss the numerical performance of the reduced basis method (RBM)
applied to several model problems. The reduced basis method (RBM) is a model order reduction
(MOR) method for solving parametrized partial differential equations (PDEs). The RBM can be
used in conjunction with the finite element method (FEM). The RBM aims to reduce the dimen-
sion of the finite element (FE) space by using finite element (FE) solutions as basis functions for
constructing a reduced basis (RB) space. We review the RBM and its theoretical properties such
as stability and error bounds. We also introduce the equi-logarithmic and greedy approaches
for constructing reduced basis (RB) spaces. We apply the RBM to coercive and noncoercive
parametrized model problems. The model problems are instances of the Poisson and Helmholtz
equations. We report convergence and error rates of the RBM applied to the model problems.
Furthermore, we compare RB spaces constructed using equi-logarithmic, equi-distant, random,
and snapshots selected by the greedy algorithm. Moreover, we investigate how the greedy al-
gorithm adapts to changes in parameters. Finally we consider three model problems where the
RBM is applied in the context of optimal control and parameter estimation problems. Optimal
control and parameter estimation problems are a natural fit for the RBM because of its improved
efficiency. The examples include the estimation of a material property from measurements and
the optimization of an airplane engine.

Zusammenfassung

Ziel der Arbeit ist es die reduced basis method (RBM) numerisch zu untersuchen. Die RBM
ist eine model order reduction (MOR) Methode für das Lösen von parameterabhängigen Diffe-
rentialgleichungen. Die RBM baut auf bestehenden Verfahren wie z.B. der finite element method
(FEM) auf. Das Ziel der RBM ist es einen reduzierten reduced basis (RB) Raum auf Basis von
bestehenden finite element (FE)-Lösungen, zu konstruieren. In dem ersten Teil der Arbeit werden
die RBM und zwei Ansätze, der equi-logarithmic und der Greedy Ansatz, für das Konstruieren
von RB-Räumen vorgestellt. Anschließend wird die RBM auf unterschiedliche Beispielprobleme
angewendet. Die Beispielprobleme bestehen aus Beispielen für parameterisierte (coercive) Poisson
und (noncoercive) Helmholtz Gleichungen. Die Numerischen Tests umfassen unter anderem Kon-
vergenztests und Tests wie der Greedy Algorithmus auf Änderungen seiner Parameter reagiert.
Außerdem werden RB-Räume die mithilfe unterschiedlicher Verfahren konstruiert wurden vergli-
chen. Die Räume wurden durch die equi-logarithmic, equi-distant, random und Greedy Ansätze
konstruiert. Abschließend wird die Anwendungen der RBM im Kontext von optimal control und
parameter estimation Problemen vorgestellt. Die Anwendungsbeispiele umfassen die Bestimmung
eines Materialparameters auf Basis von Messdaten und die Minimierung der Lärmemissionen einer
Flugzeugturbine.
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Chapter 1

Introduction

In many applications, the mathematical models that are used depend on parameters that char-
acterize the concrete instance of a problem. In their numerical simulation, the fast and accurate
evaluation of solutions at many values of these parameters is often required. Model order reduc-
tion (MOR) methods allow us to substitute multiple solves of the large dimensional problem with
the solution to problems of small dimension. RBMs are an instance of MOR methods, which are
constructed from precomputed solutions at few values of the parameters.

In this thesis, we focus on problems governed by partial differential equations (PDEs) dis-
cretized by finite element methods (FEMs), and the RBM as MOR.

In particular, we consider elliptic problems, whose variational formulation reads as follows:
Given a Hilbert space V , a bilinear form a : V × V → R, and a linear form f : V → R

findu ∈ V such that a(u, v) = f(v) ∀v ∈ V. (1.1)

The FEM consists in restricting problem (1.1) to a finite dimensional space Vh ⊂ V :

findu ∈ Vh such that a(u, v) = f(v) ∀v ∈ Vh. (1.2)

Assume that the problem is parametrized by a parameter µ ∈ P from a parameter space P.
Hence, problem (1.1) becomes

findu(µ) ∈ V (µ) such that a(µ, u(µ), v) = f(µ, v) ∀v ∈ V (µ). (1.3)

The solution to problem (1.3) can still be approximated by standard FEMs. Given a particular
value µ0 ∈ P the FEM associated with (1.3) reads

findu(µ0) ∈ Vh(µ0) such that a(µ0, u, v) = f(µ0, v) ∀v ∈ Vh(µ0). (1.4)

Assume we are interested in approximating solutions for many different values of the param-
eter. Then, the FEM has to be applied several times. The complexity of solving problem (1.4)
depends on the dimension of the space Vh. Usually Vh is a high dimensional space. This makes
solving (1.4) for many parameter values unfeasible.

RBMs offer a more efficient way to approximate solutions to problem (1.4). Instead of
solving problem (1.4) in a high dimensional space Vh, RBMs reformulate the problem in a lower
dimensional space VN with dim(VN) = N << dim(Vh). This allows us to approximate solutions
to (1.4) for many parameter values. Thus, the RBM reads

findu(µ) ∈ VN(µ) such that a(µ, u(µ), v) = f(µ, v) ∀v ∈ VN(µ). (1.5)

The space VN is constructed using solutions to (1.4) at selected parameter points, the so-called
snapshots, µi for i = 1 . . . N . The snapshots can be computed by greedy algorithms or determined
from a priori known distributions, e.g. the equi-logarithmic distribution.
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The aim of the thesis is to investigate the numerical performance of the RBM. Noncoercive
problems, in particular the Helmholtz equation, are the main focus.

In Chapter 2, we review the foundations of the FEM and of the RBM. We provide an overview
of the theoretical properties of the RBM applied to coercive and weakly coercive, or inf-sup stable,
problems. We also discuss the motivations behind the RBM and how the structure of (1.4)
influences the reducibility of a problem. Moreover, we present an offline-online decomposition,
originally introduced in [Pru+01], that allows for an efficient construction of RB spaces, in case the
bilinear and linear forms in (1.3) depend affinely on the parameter µ. We discuss two approaches
for constructing RB spaces: spaces obtained with equi-logarithmic distributions, introduced in
[MPT02a; MPT02b], and the greedy algorithm, originally introduced in [Gre05]. In addition, we
review an a-posteriori error estimator, from [Pru+01], that can be used in greedy algorithms.

In Chapter 3, we apply the RBM to coercive problems. We consider two examples. The
first one is that of a thermal block that is heated from the inside, and whose shape depends
on a parameter µ. The second one is a thermal block that is divided into different subregions
with differing conductivity, and a heat source on the bottom boundary. We show that the RBM
provides exponential convergence of the approximation error, and that the resulting RB spaces
are very small (N ' 10).

In Chapter 4, the RBM is applied to a noncoercive problem, i.e. the Helmholtz equation.
Again, we consider two examples. The first one is that of a plane wave that travels along a fixed
direction. The problem is parametrized by the wavenumber k. The second problem is an example
for the transmission or reflection of a wave that travels through two fluids with different refractive
indices n1 and n2. The problem is parameterized by the wavenumber k, and the refractive indices
n1 and n2.

The numerical experiments show that the approximation error decays exponentially with the
dimension of the RB space VN , albeit much slower than in the coercive case. Furthermore, the
resulting RB spaces are larger than in the coercive case, i.e. the dimension N of the reduced
space is of the order 102.

Besides showing the convergence of the RBM, we investigate certain aspects of the RBM,
such as the greedy algorithm, in more detail. Furthermore, we investigate how the generated RB
spaces change depending on the wavenumber interval [kmin, kmax] for which they are constructed.
We see that the dimension of RB spaces increases linearly with the interval length kmax − kmin.

In the subsequent experiments, we investigate how the greedy algorithm reacts to different
initial snapshots and different choices for the training sets. In both cases, we find that the greedy
algorithm is unaffected by them.

In a last experiment, we find that oscillations in solutions affect the resulting RB space. In the
case of highly oscillating solutions, the resulting RB spaces are of higher dimension, compared to
the case where the solutions do not oscillate.

Chapter 5 is devoted to practical examples on how the RBM can be used to solve parameter
estimation or optimal control problems. An optimal control problem consists of a parameterized
state problem and an output function. The output function maps a solution of the state problem
to an output. The goal of solving an optimal control problem is finding the input parameter for
the state problem that leads to a given output.

The input parameter might be material properties or parameters that define the geometry
of the problem. The output is given by physical measurements from real world experiments. In
order to estimate the material properties from the given output, we look for an input parameter
that leads to an output that matches the given output as close as possible. This can be done by
optimizing a cost function that measures the distance between the given output and an output
derived from a given input parameter. Depending on the optimization procedure, the state
problem must be solved several times.

We apply the RBM to three problems discretised by the FEM. The first one is the transmis-
sion/reflection problem taken from Chapter 4.

The second problem models the propagation of sound on the door of a car. A loud speaker
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mounted on the door emits soundwaves that propagate through the domain. The bottom of
the door consists of a damping material of unknown impedance. The aim is to estimate the
impedance of the damping material based on measurements at six different points.

The third problem models the sound emitted from from an airplane engine. The engine is
enclosed by a damping material of impedance i. The aim is to minimize the noise emitted from
the engine by finding the optimal impedance i for the damping material.

In order to test the effectivity of the RBM, we select random inputs and calculate the output
using the FEM. Afterwards we try to estimate the original input using the given output and the
RBM. We find that the estimates accurately predict the original input. In case of the engine
noise problem, no original input needs to be estimated. Instead, we first estimate the optimal
impedance using the FEM. Afterwards we estimate the optimal impedance using the RBM and
compare the results. We find that the RBM gives results close to the results computed using the
FEM.

I would like to thank my supervisors Univ.-Prof. Ilaria Perugia, PhD and Dr. Lorenzo Mascotto
for their numerous suggestions and continuing support of my thesis. I also would like to thank
Paul Stocker MSc for his help with Ngsolve.
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Chapter 2

The reduced basis method

RBMs provide a way to compute effectively FE solutions to parametrized problems. The core
idea of the method consists in reducing the high dimensional (FE) discretisation of the function
space to a lower dimensional RB-Space.

The goal of this chapter is to give a theoretical introduction of the RBM. In Section 2.1 we
start by reviewing some relevant facts about the FEM. Next, we introduce RB spaces in Section
2.2. Sections 2.3 and 2.4 are devoted to the selection of parameter points. Section 2.5 describes
the implementation details.

2.1 Review of the finite element method
In this section we review the FEM. For a thorough introduction see e.g. [Qua14]. The FEM is a
method for approximating solutions to PDEs in weak formulation.

For example, consider the strong formulation of the Poisson equation, with homogeneous
Dirichlet boundary conditions:

−∆u =f in Ω,
u =0 on ∂Ω.

Its weak formulation is obtained by multiplying the equation with a sufficiently smooth test
function v and integrating by parts∫

Ω
∇u∇v =

∫
Ω
fv ∀v ∈ V.

In symbols, the problem reads

find u ∈ V such that a(u, v) = f(v) ∀v ∈ V, (2.1)

where

V = H1
0 (Ω), a(u, v) =

∫
Ω
∇u∇v, f(v) =

∫
Ω
fv.

Well posedness, i.e. existence, uniqueness and continuous dependence on the data of prob-
lem (2.1), is guaranteed by the Lax-Milgram theorem, see Theorem 1, or Nečas theorem, see
Theorem 2.

2.1.1 Coercive problems and the finite element method
The bilinear form a(u, v) is called coercive, with coercivity constant α, if

∃α > 0 such that a(v, v) ≥ α ‖v‖2
V ∀v ∈ V. (2.2)
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It is called continuous, with continuity constant γ, if

∃γ > 0 such that a(u, v) ≤ γ ‖u‖V ‖v‖V ∀u, v : u, v ∈ V. (2.3)

For bilinear forms satisfying both the coercivity and the continuity properties, well-posedness
of problem (2.1) is ensured by the Lax-Milgram theorem.

Theorem 1. Lax-Milgram: Let V be a Hilbert space with the norm ‖·‖V . Let a(·, ·) be continuous
and coercive with continuity constant γ and coercivity constant α. Let l(·) : V → R be a linear
functional such that

∃C > 0 such that |l(v)| ≤ C ‖v‖V ∀v ∈ V.

Then, there exists a unique u ∈ V such that a(u, v) = l(v) for all v ∈ V . Moreover, the solution
u satisfies

‖u‖V ≤
1
α
‖l‖V ′ ,

where

‖l‖V ′ = sup
v∈V,v 6=0

|l(v)|
‖v‖V

.

A proof can be found in [QV16, Section 5.1.1].
The FEM reads

find uh ∈ Vh such that a(uh, vh) = f(vh) ∀vh ∈ Vh, (2.4)

where Vh ⊂ V is of finite dimension.
Assuming the assumptions of Theorem 1 apply to the continuous problem (2.1), it follows:

1. a(·, ·) is continuous and coercive on Vh × Vh, with continuity and coercivity constants γh
and αh. Moreover, γh ≤ γ and αh ≥ α.

2. The Galerkin orthogonality holds true

a(u− uh, vh) = 0 ∀vh ∈ Vh. (2.5)

3. Céa’s lemma guarantees

‖u− uh‖V ≤
γ

α
inf
vh∈Vh

‖u− vh‖V . (2.6)

Thus Theorem 1 is valid for problem (2.4). To guarantee convergence of the FEM we require

lim
h→0

inf
vh∈Vh

‖v − vh‖V = 0 ∀v ∈ V. (2.7)

2.1.2 Weakly coercive or inf-sup stable problems
For some problems the assumptions of Theorem 1 are too strong. Notwithstanding, for weakly
coercive or inf-sup stable problems, the Nečas theorem provides similar results. Consider a problem
more general than in the coercive case (2.1). Given two Hilbert spaces V and W , a bilinear form
a : V ×W → R, and a linear form f : W → R the problem reads

findu ∈ V such that a(u,w) = f(w) ∀w ∈ W. (2.8)
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We assume that the bilinear form a(·, ·) is continuous with continuity constant γ. Further,
we require that a(·, ·) is inf-sup stable (or weakly coercive):

∃β > 0 such that inf
v∈V

sup
w∈W

a(v, w)
‖v‖V ‖w‖W

≥ β (2.9)

and

inf
w∈W

sup
v∈V

a(v, w)
‖v‖V ‖w‖W

> 0. (2.10)

Given a bilinear form a(·, ·) that is continuous and inf-sup stable the Nečas theorem ensures
well-posedness of the problem, see [Neč67].

Theorem 2. Nečas: Let V and W be two Hilbert spaces, let a(·, ·) be a bilinear form a(·, ·) :
V ×W → R that is inf-sup stable and continuous with β and γ being the stability and continuity
constants. Then, problem (2.8) has a unique solution, which satisfies

‖u‖V ≤
1
β
‖f‖W ′ , (2.11)

where

‖f‖W ′ = sup
w∈W,w 6=0

|f(w)|
‖w‖W

. (2.12)

The FEM reads

finduh ∈ Vh such that a(uh, wh) = f(wh) ∀wh ∈ Wh, (2.13)

where Vh ⊂ V and Wh ⊂ W are finite dimensional subspaces.
Unlike in the coercive case, well-posedness of problem (2.13) does not follow from the well-

posedness of the continuous problem. Instead we assume that the discrete inf-sup condition holds
for the discrete problem:

βh = inf
vh∈Vh

sup
wh∈Wh

a(vh, wh)
‖vh‖V ‖wh‖V

. (2.14)

The following theorem provides well-posedness of problem (2.8), see [Bab71, Theorem 2.1]:

Theorem 3. Babuška: Let Vh ⊂ V and Wh ⊂ W be finite dimensional subspaces. Let a(·, ·) :
Vh×Wh → R denote a bilinear form and let fh be a linear functional satisfying the assumptions
of Theorem 1. Let a be continuous on Vh×Wh and satisfy the discrete inf-sup condition (2.14).

Then, problem (2.13) has a unique solution uh ∈ Vh ∀h > 0. The solution satisfies

‖uh‖ ≤
1
βh
‖f‖W ′ . (2.15)

Moreover, the error of the solution is bounded:

‖u− uh‖V ≤
γ

βh
inf
vh∈Vh

‖u− vh‖V . (2.16)

As in the coercive case, the continuity of the bilinear form a(·, ·) over Vh ×Wh follows from
the continuity over V ×W . This is not the case for the discrete inf-sup stability. Instead, we
must require that condition (2.14) is fulfilled in the discrete case.

In the following sections we will only cover the case, where the test and trial space coincide
VN = WN . Other approaches are not considered. For more details see [QMN16].
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2.1.3 The finite element linear system
Problem (2.4) can be solved by solving an equivalent linear system. Denote by {φj}Nhj=1 a set of
basis functions for the finite dimensional space Vh. Every function vh ∈ Vh is defined by:

vh =
Nh∑
j=1

vjφj for some v ∈ RNh .

Let uh ∈ RNh denote the coefficient vector associated with the solution uh to (2.4). Plugging
this ansatz into (2.4) we derive:

Nh∑
j=1

a(φj, φi)uhj = f(φi) for i = 1, . . . , Nh.

This is equivalent to the linear system:

Ahuh = fh, (2.17)

where Ah ∈ RNh×Nh , (Ah)ij = a(φj, φi) and fh ∈ RNh , (fh)i = f(φi).
Thus the solution to problem (2.4) is obtained by solving the linear system (2.17). The

complexity for solving a linear system depends on the dimension of the matrix Ah and on the
solver.

Henceforth u denotes the exact solution to problem (2.1), a(·, ·) and f(·) denote the contin-
uous forms, and V the continuous space. A subscript h indicates their FE versions and subscript
N the RB counterparts. Thus uh is the FE solution and uN the RB solution. Ω denotes the
domain. Unless otherwise noted the norm ‖·‖V is the norm of space V . Typically this is the H1

norm: ‖v‖V = ‖v‖L2(Ω) + ‖∇v‖L2(Ω).

2.2 The reduced basis ansatz
Let P denote a parameter space. Assume that problem (2.1) depends on a parameter µ ∈ P.
More precisely, we want to solve:

finduh(µ) ∈ Vh(µ) such that a(µ, uh(µ), vh) = f(µ, vh)
∀vh ∈ Vh(µ),∀µ ∈ P. (2.18)

Theorem 1 and Theorem 2 still apply, however all constants and bounds depend on µ (e.g.
βh → βh(µ) and γh → γh(µ)).

Consequently the linear system (2.17) becomes

Ah(µ)uh(µ) = fh(µ), (2.19)

where

Ah(µ) ∈ RNh×Nh , (Ah(µ))ij = a(µ, φj, φi),
fh(µ) ∈ RNh , (fh(µ))i = f(µ, φi).

Our aim is to solve problem (2.18) for a large number of parameters. This can become
prohibitively expensive.

The key idea of the RBM ansatz consists in projecting the elements of Vh into a lower
dimensional space VN ⊂ Vh. For example: let {vi}Ni=1 ⊂ Vh denote a set of basis functions
for Vh. Let VN ⊂ Vh be the space spanned by {vi}Ni=1. Denote by v(i) the coefficient vector
representing vi. We define the matrix AN ∈ RN×N ,

(AN)i,j = a(vi, vj) for i, j = 1 . . . N. (2.20)
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Using the coefficient vectors vi and (2.17) we obtain

(AN)i,j = a(vi, vj) =
Nh∑
k=1

Nh∑
l=1

v(i)
k a(φk, φl)v(j)

l . (2.21)

Let V ∈ RNh×N and V = [v(1)| . . . |v(N)] then (2.21) can be written as

AN = VTAhV. (2.22)

Analogously we derive

fN = VT fh. (2.23)

Thus, the RBM reads:

finduN(µ) ∈ VN such that a(µ, uN(µ), vN) = f(µ, vN) ∀vN ∈ VN (2.24)

and the linear system (2.19) becomes

AN(µ)u(µ) = fN(µ). (2.25)

Note that VTAhV ∈ RN×N and VT fh ∈ RN : Hence the dimension of this linear system is
independent of Nh. If N << Nh, then the linear system (2.25) can be solved faster than (2.19).

Another way to look at RBM is as follows. Assume that the solution set Mh = {uh(µ) ∈
Vh : µ ∈ P} is such that it can be approximated by a linear combination of some of its elements,
consequently these elements can be used as a basis for the space VN .

This perspective gives us a way to form the projection matrix as follows: Let N denote the
dimension of the reduced space VN .

1. Select a set of N parameter points: SN = {µ(1), . . . , µ(N)} and compute the corresponding
FE solutions {uh(µ(1)), . . . , uh(µ(N))}.

2. Let {ζ(1), . . . , ζ(N)} be orthonormalized (〈ζ(i), ζ(j)〉V = δij and ‖ζi‖V = 1) functions, such
that

VN = span{ζ(1), . . . , ζ(N)} = span{uh(µ(1)), . . . , uh(µ)(N)}.

The {ζ(i)} are called the reduced basis and VN denotes the reduced basis space.

3. Define V by V = [ζ(1)| . . . |ζ(N)].

The orthogonalization, in step two, is necessary to improve the numerical condition of the problem,
see [RHP07].

It remains open how to choose N and SN . This will be discussed in Sections 2.3 and 2.4.
To calculate the solution at a parameter point we solve equation (2.25). The solution uN ∈ VN

can be used to calculate the coeffcients of the FE solution uh = VuN.

2.2.1 Affine parameter dependence
A further ingredient of the RB approach is the assumption of affine parameter dependence of
the bilinear and linear forms. Assume both the bilinear form a(µ, ·, ·) and f(µ, ·) are affine with
respect to the parameter µ. In other words, assume:

a(µ, u, v) =
Qa∑
q=1

θqa(µ)aq(u, v), (2.26)

f(µ, v) =
Qf∑
q=1

θqf (µ)fq(v). (2.27)
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FEM discretisation: compute Ah and fh

Select SN and form V

Reduce the system and store the Aq
N matrices

and fq
N vectors

Assemble the (reduced) system and solve for uN(µ)

Recover uh(µ) by uh(µ) = VuN(µ)

Offline phase

Online phase

Figure 2.1: Overview of the offline-online phases. The (expensive) offline phase is only executed
once, whereas the online phase is executed for every parameter point (µ) of interest.

The affine dependence carries through to the linear system:Qa∑
q=1

θaq (µ)Aq
h

uN(µ) =
Qf∑
q=1

θqf (µ)fq
h

 , (2.28)

where

(Aq
h)ij = aq(φi, φj), (fq

h )i = fq(φi), 1 ≤ i, j ≤ Nh. (2.29)

This allows us to computed all µ independent terms once and store them for further calculations.
More precisely, we write:

Aq
N = VTAq

hV, fq
N = VTfq

h . (2.30)

To solve the system for a parameter point µ, we calculate

AN(µ) =
Qa∑
q=1

θaq (µ)Aq
N, fN(µ) =

Qf∑
q=1

θqf (µ)fq
N. (2.31)

All operations in (2.31) involve only quantities, whose dimension depends on N . Typically N <<
Nh, hence this is faster than reducing the system for every parameter point.

The reduced basis ansatz and the affine parameter assumption allow us an efficient offline-
online approach, see Figure 2.1.

In the following sections the stability of the RB approach is analysed.

2.2.2 Coercive problems
The stability analysis of the RBM for coercive problems is similar to the stability analysis of the
FEM for coercive problems (see Section 2.1.1). The Lax-Milgram theorem provides well-posedness
and the following bound for the solution uN to problem (2.24):
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Theorem 4. Assume that the assumptions of Theorem 1 are fulfilled for any µ ∈ P. Then, the
solution uN to problem (2.24) is unique and satisfies:

‖uN(µ)‖V ≤
1

αN(µ) ‖f(µ, ·)‖V ′ , (2.32)

where
αN = inf

v∈VN

a(µ, v, v)
‖v‖2

V

. (2.33)

For a symmetric bilinear form a(µ, ·, ·), it can be shown, see [Ver03]:

‖uh(µ)− uN(µ)‖V ≤

√√√√ γh(µ)
αN(µ) inf

w∈VN
‖uh(µ)− w‖V . (2.34)

2.2.3 Weakly coercive problems
In case the bilinear form a(µ, ·, ·) is weakly coercive (or inf-sup stable) the Lax-Milgram theorem
does not apply. Instead the well-posedness of the RB problem is ensured by the following theorem,
which is a consequence of the Babuška theorem (Theorem 3):

Theorem 5. Assume the bilinear form is continuous, with

γh(µ) = sup
vh∈Vh

sup
wh∈Vh

a(µ, vh, wh)
‖vh‖V ‖wh‖V

. (2.35)

Then, the following lower bound of the continuity constant is valid

γ̄F > sup
v∈VN

f(µ,w)
‖w‖W

∀µ ∈ P. (2.36)

Moreover, the following lower bound of the inf-sup stability constant βN(µ) is valid:

β0,N ≤ βN(µ) = inf
vN∈VN

sup
wN∈VN

a(µ, vN , wn)
‖vN‖V ‖wN‖V

∀µ ∈ P. (2.37)

Consequently, the RB problem admits a unique solution uN(µ) ∈ VN satisfying

‖uN(µ)‖V ≤
1

βN(µ) ‖f(µ, ·)‖V ′ . (2.38)

Theorem 5 applies to the case where test and trial space are the same (VN = WN).

2.2.4 Reducibility and approximability
In order to successfully apply the RBM it is important that the problem is reducible. However it
is not trivial to determine the reducibility of a problem. The reducibility of a problem depends on
a number of factors. We will present two factors that play an important role in the reducibility of
a problem. The first factor is the differentiability and regularity of the solution map. The second
factor is approximability of the solution set by N dimensional subspaces. For a more detailed
discussion see [QMN16, Chapter 5].

Define the solution maps

φ : P→ V , µ 7→ u(µ), (2.39)
φh : P→ Vh, µ 7→ uh(µ), (2.40)
φN : P→ VN , µ 7→ uN(µ), (2.41)
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and the associated solution sets

M = {φ(µ) : µ ∈ P}, (2.42)
Mh = {φh(µ) : µ ∈ P}, (2.43)
MN = {φN(µ) : µ ∈ P}. (2.44)

Our goal is to identify a space VN ⊂ V with dimension N such that

inf
v∈VN
‖u(µ)− v‖ < ε ∀µ ∈ P. (2.45)

Moreover, we want to keep N as small as possible. As a first step the following two theorems
are valid, see [QMN16, Chapter 5]:

Theorem 6. Assume that the coercive bilinear form a(µ, ·, ·) and the linear form f(µ, ·) are
Lipschitz continuous with respect to µ. Moreover, assume there exist two constants La, Lf > 0,
such that

|a(µ, u, v)− a(µ′, u, v)| ≤ La ‖u‖V ‖v‖V ‖µ− µ
′‖ ∀µ, µ′ ∈ P,∀u, v ∈ V, (2.46)

|f(µ, v)− f(µ′, v)| ≤ Lf ‖v‖V ‖µ− µ
′‖ ∀µ, µ′ ∈ P,∀v ∈ V. (2.47)

Then, there exists a positive constant Lu > 0 such that

‖u(µ)− u(µ′)‖V ≤ Lu ‖µ− µ′‖ ∀µ, µ′ ∈ P. (2.48)

Further, φ is a continuous map, i.e., φ ∈ C0(P, V ), where

C0(P,V) = {v : P→ V : µ 7→ v(µ) is continuous and max
µ∈P
‖v(µ)‖ < +∞}. (2.49)

The solution setM is compact in V .

Theorem 6 can be generalized to the case of inf-sup stable problems, see [QMN16, Chapter 5].
In case the bilinear form a and the linear form f fulfil the affine parametric dependence

assumption (2.26) and (2.27) the Lipschitz continuity only depends on the Lipschitz continuity
of θqa and θqf . If θqa and θqf are Lipschitz continuous

|θqa(µ)− θqa(µ′)| ≤ Lqa ‖µ− µ′‖ ∀µ, µ′, q : µ, µ′ ∈ P, q = 1 . . . Qa, (2.50)∣∣∣θqf (µ)− θqf (µ′)
∣∣∣ ≤ Lqf ‖µ− µ′‖ ∀µ, µ′, q : µ, µ′ ∈ P, q = 1 . . . Qf , (2.51)

then one can show, see [QMN16, Section 5.3.1]

|a(µ, u, v)− a(µ′, u, v)| ≤
Qa∑
q=1

γqfL
q
a ‖µ− µ′‖ ,

and

|f(µ, v)− f(µ′, v)| ≤
Qf∑
q=1

γqLqf ‖µ− µ′‖ ,

where

γq = sup
v∈V

sup
w∈W

aq(v, w)
‖v‖V ‖w‖W

, γqf = sup
v∈V

fq(v)
‖v‖V

. (2.52)

are the continuity constants.
Moreover, the following theorem is valid:
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Theorem 7. Assume that the bilinear form a(µ, ·, ·) and the linear form f(µ, ·) are Ck maps
with respect to µ for some k ≥ 0. Moreover, let a(µ, ·, ·) be continuous and inf-sup stable for
all µ ∈ P and let f(µ, ·, µ) be continuous for all µ ∈ P. Then, the solution map φ is of class Ck

as well.

It can be shown that, see [QMN16, Section 5.3.2], given a point µ0 ∈ P = RP

∥∥∥∥∥∂u(µ0)
∂µi

∥∥∥∥∥
V

≤ 1
β(µ0)

 P∑
i=1

Qf∑
q=1

γqf

∣∣∣∣∣∂θ
q
f (µ0)
∂µi

∣∣∣∣∣+
P∑
i=1

Qa∑
q=1

γq
∣∣∣∣∣∂θqa(µ0)
∂µi

∣∣∣∣∣ 1
β(µ0)

Qf∑
q=1

γqf (µ0)
 . (2.53)

Theorems 6 and 7 are valid for φh as well, see [QMN16, Chapter 5].
Next we want to ensure that the dimension N of VN can be small, while still maintaining good

approximation properties. To this purpose, we introduce the Kolmogorov n-width, see [Mel00].
First, we introduce a measure for the approximation quality, of a subspace

d(K,Sn) = sup
k∈K

inf
sn∈Sn

‖k − sn‖V . (2.54)

K is a set of elements that we want to approximate by elements of the space sn. We define the
Kolmogorov n-width as

dn(K,S) = inf
Sn⊂S

dim(Sn)=n

d(K,Sn) = inf
Sn⊂K

dim(Sn)=n

sup
k∈K

inf
sn∈Sn

‖k − sn‖S . (2.55)

The n-width measures how good elements of a subspace K ⊂ S can be approximated by a
discrete subspace Sn of dimension n of S. If we use the n-width together with the solution
set Mh and Vh, then we get a measure of how good the solutions to problem (2.4) can be
approximated by subspaces of a given dimension:

dn(Mh, Vh) = inf
Vn⊂Vh

dim(Vn)=n

d(Mh, Vn) = inf
Vn⊂Vh

dim(Vn)=n

sup
uh∈Mh

inf
vn∈Vn

‖uh − vn‖V . (2.56)

Moreover, we can define the n-width of a space by

dn(V ) = inf
Vn⊂V

dim(Vn)=n

dn(V, Vn) (2.57)

In general it is not trivial to derive bounds for the n-width of general solution sets to problems of
the form of (2.1). However given suitable assumptions, on the bilinear form a(µ, ·, ·), the n-width
decays exponentially with n, see [QMN16, Chapter 5].

2.3 Selection of parameter points: equi-logarithmic spaces
Consider problems involving a bilinear form a(µ,w, v) of the form:

a(µ,w, v) = a0(w, v) + µa1(w, v), (2.58)

where µ ≥ 0 ∈ R, a0 : V ×V → R and a1 : V ×V → R are continuous, symmetric and positive
semi-definite, and a0 coercive.

Then, the following theorem shows the exponential decay of the approximation error
‖uh(µ)− uN(µ)‖V , assuming a equi-logarithmic distribution of the parameter points.

Theorem 8. Assume there exists a ρ > 0 ∈ R such that

a1(v, v)
a0(v, v) ≤ ρ ∀v 6= 0 ∈ V. (2.59)
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Let the parameter points µk fulfil

µk = e(−logρ+
∑k

l=1 δlN ) − 1
ρ
, (2.60)

where ρ is any lower bound for ρ1, and

N∑
l=1

δlN = log(ρµmax + 1), (2.61)

c ≥ δkn
δN

for k = 1...N. (2.62)

Let N satisfy
N ≥ Ncrit = c e log(ρµmax + 1). (2.63)

Then, the RB approximation error is bounded by

‖uh(µ)− uN(µ)‖V ≤
√

(1 + µmaxρ1) ‖uh(0)‖ e−
N

Ncrit . (2.64)

The theorem is stated and proven in [MPT02b]. Besides, proving a uniform error bound for
the RB approximation error Theorem 8 also gives an estimate for the dimension of the RB space.
The dimension of the RB-space depends logarithmically on the exact bilinear form, through ρ,
and on the length of the interval (µmax).

Moreover, it is noted in [MPT02b] that the requirement of an exact logarithmic point distri-
bution is rather weak and for example log random distributions perform almost as good. This
can also be seen in the numerical tests in [Ver03]. Furthermore, the numerical tests in [Rov03]
suggest that the logarithmic point distribution performs well also for problems not satisfying
equation (2.58).

2.4 Selection of parameter points: greedy algorithm
The greedy algorithm is a different approach for the selection of parameter points. The greedy
algorithm searches for an optimal set of parameters. Initially it was developed for time-dependent
parabolic problems, see [GP05; Gre05]. Nonetheless, it can be applied to a more general setting.

In general, greedy algorithm construct a solution, by selecting the most advantageous option
at every step. Applied to the construction of RB spaces, this reads: Given a current space VN , of
dimension N , select a new basis function uh(µN+1) by choosing the parameter µN+1, such that
the approximation error is maximized. This is done until some stopping criterion is reached. For
instance, the maximal error is lower than a given tolerance emax.

Algorithm 1 contains the structure of a greedy algorithm for constructing RB spaces. Note
that the uN(µ) in equations (2.65) and (2.66) refers to the approximate RB solution in the RB
space Vi.

The calculation of the approximation error in equations (2.65) and (2.66) can not be imple-
mented directly. Discretising the parameter space P and calculating the approximation error at
the grid points would be to expensive.

Error estimators offer a way out. If we have a way to predict the approximation error without
using the FE solution uh(µ), then we could use this error estimator as a surrogate for the true
approximation error. The error estimator is given in the form of r : P(Vh) × P → R. The
function r estimates the RB error at a parameter point, given a current RB space. The design
of an appropriate error estimator is the topic of Section 2.4.2.

Even with an error estimator calculating arg maxµ∈P r(Vi, µ) over the whole parameter space
P is infeasible. Instead we choose a training set Ξ ⊂ P to calculate µ(i+1) as arg maxµ∈Ξ r(Vi, µ).
The resulting algorithm is shown in Algorithm 2.
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Algorithm 1 Greedy algorithm for constructing RB spaces.
Set a maximal error tolerance emax
Set an initial uh(µ(1))
Initialize i← 1, ε←∞, ζ1 = uh(µ(1))

‖uh(µ(1))‖
V

and V1 ← span(ζ1)
while ε > emax do

ε← max
µ∈P
‖uh(µ)− uN(µ)‖V (2.65)

µ(i+1) ← arg max
µ∈P

‖uh(µ)− uN(µ)‖V (2.66)

uh(µ(i+1))← (Ah(µi+1))−1fh(µi+1) (2.67)
ζi+1 ← orthonormalize uh(µ(i+1)) w.r.t {ζ1, . . . , ζi} (2.68)
Vi+1 ← span(ζ1, . . . , ζi+1) (2.69)

i← i+ 1 (2.70)

end while

V =[ζ1| . . . |ζi]

Algorithm 2 Greedy algorithm for constructing RB spaces, with an error estimator.
Set a maximal error tolerance emax
Set an initial uh(µ(1))
Initialize i← 1, ε←∞, ζ1 = uh(µ(1))

‖uh(µ(1))‖
V

and V1 ← span(ζ1)
while ε > emax do

µ(i+1) ← arg max
µ∈Ξ

r(Vi, µ) (2.71)

ε← r(Vi, µ(i+1)) (2.72)
uh(µ(i+1))← (Ah(µi+1))−1fh(µi+1) (2.73)

ζi+1 ← orthonormalize uh(µ(i+1)) w.r.t {ζ1, . . . , ζi} (2.74)
Vi+1 ← span(ζ1, . . . , ζi+1) (2.75)

i← i+ 1 (2.76)

end while

V =[ζ1| . . . |ζi]
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The computational cost of the greedy algorithm is

O(NNΞMest +NMinv +NMorth), (2.77)

where Mest denotes the complexity of the error estimator, NΞ the size of the training set Ξ,
Minv denotes the complexity of matrix inversion and Morth of orthonormalization. Assuming
that O(Minv) = O(NN3

h), O(Morth) = O(N2
h), O(Mest) = O(1) and N const. with N << Nh

and NΞ << Nh. This leads to a global complexity of O(N3
h).

2.4.1 A priori convergence of the greedy algorithm
Let ζi denote the orthonormalized basis functions selected by the greedy algorithm. We define
the projector PN : V → VN with respect to the V inner product

PNs =
N∑
i=1
〈s, ζi〉V ζi. (2.78)

Denote the projection error by σN(s)

σN(s) = ‖s− PNs‖V . (2.79)

For the greedy Algorithm 2 the following result is proved in [Bin+11]:

Theorem 9. Assume that there exist two positive constants cr and Cr independent of µ and N
and that the error estimator r satisfies

crr(VN , µ) ≤ ‖u(µ)− uN(µ)‖V ≤ Crr(VN , µ) ∀µ ∈ P. (2.80)

Furthermore, given M,a, α > 0 assume that the Kolmogorov n-width of the space V decays
exponentially

dn(V ) ≤Me−aN
α

. (2.81)

Then, the following upper bound for the projection error holds

max
v∈V

σN(v) ≤ CMe−cN
β

, n ≥ 0. (2.82)

Here 0 < θ ≤ 1:

β = α

α + 1 , q = d2Cr
crθ
e2, N0 = d(8q)

1
1−β e,

c = min(|lnθ|, (4q)αa), C = max(ecN
β
0 , q

1
2 ).

Although the theorem refers to the space V , it also applies to a sufficiently fine discretisation
Vh of V , see [Bin+11]. Note that the performance of the greedy algorithm depends on the
effectivity of the error estimator.

2.4.2 A posteriori error estimator
For Algorithm 2, it is crucial to estimate the RB approximation error eN = uh(µ) − VuN(µ) in
a fast and cheap way.
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To calculate eN directly we need to calculate the RB and the FE solutions. This is expansive.
Therefore, we derive expressions that are independent of the FE solution uh. The following
derivations follow [QMN16, Chapter 3], [Sen+06] and [RHP07]: Define the residual r(µ, v) as:

r(µ, v) = f(µ, v)− a(uN(µ), v, µ),
= a(uh(µ), v, µ)− a(uN(µ), v, µ),
= a(eN(µ), v, µ) ∀v ∈ V.

By the continuity Property (2.3) of a and the definition of the dual norm, we get

a(eh(µ), v, µ) ≤ γh(µ) ‖eN(µ)‖V ‖v‖V ,
|r(µ, v)| ≤ γh(µ) ‖eN(µ)‖V ‖v‖V ,

‖r(µ, ·)‖V ′ ≤ γh(µ) ‖eN(µ)‖V ∀v ∈ Vh.

Using (2.14), we deduce:

βh(µ) ‖eN(µ)‖V = inf
v∈Vh

sup
w∈V

a(µ, v, w)
‖v‖V ‖w‖V

‖eN(µ)‖V

≤ sup
w∈V

a(µ, eN(µ), w)
‖eN(µ)‖V ‖w‖V

‖eN(µ)‖V

≤ ‖r(µ, ·)‖V ′ .

Hence, we can derive the following bounds:

1
γh(µ) ‖r(µ, ·)‖V ′h ≤ ‖eN(µ)‖V ≤

1
βh(µ) ‖r(µ, ·)‖V ′h . (2.83)

This proves the reliability of the error estimator. Note that 1
γh(µ) and 1

βh(µ) correspond to cr and
Cr respectively in Theorem 9. This implies that the closer βh(µ)

γh(µ) tends to 1, the better the greedy
algorithms convergence will be.

Equation (2.83) also gives a way to implement an error estimator for the greedy algorithm.
To compute the residual norm, note that:

rh(µ,uN) = fh(µ)−Ah(µ)VuN

= Ah(µ)uh −Ah(µ)VuN

= Ah(µ)(uh − VuN)
(Ah(µ))−1rh(µ,uN) = uh − VuN = eN(µ), (2.84)

with uN denoting the coefficients of the RB solution. By taking the norms on both sides:

‖eN(µ)‖2 ≤
∥∥∥(Ah(µ))−1

∥∥∥
2
‖rh(µ,uN)‖2 = ‖rh(µ,uN)‖2

σmin(Ah(µ)) , (2.85)

where σmin(Ah(µ)) denotes the smallest singular value of Ah(µ).
To get a error bound in the norm of the space V , we define

(Xh)i,j = (φi, φj)V , (2.86)

‖v‖2
Xh

=
∥∥∥Xh

1
2v
∥∥∥2

2
= vTXhv, (2.87)

where {φi}Nhi=1 denotes a set of basis functions of Vh.
Left multiply (2.84) with Xh

1
2 and use I = Xh

1
2 Xh

− 1
2 to obtain

Xh
1
2 eN(µ) = Xh

1
2 (Ah(µ))−1Xh

1
2 Xh

− 1
2 rh(µ,uN). (2.88)
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By taking norms again, we deduce

‖eN(µ)‖Xh
≤

‖rh(µ,uN)‖Xh
−1

σmin(Xh
− 1

2 Ah(µ)Xh
− 1

2 )
. (2.89)

If a matrix S is symmetric, then σmin(S) = λmin(S), with λmin(S) denoting the smallest eigen-
value of S. Moreover, σmin(Xh

− 1
2 Ah(µ)Xh

− 1
2 ) is the discrete inf-sup stability constant βh(µ),

see [QMN16].
To calculate the error bound for a given µ, the residual r(µ, v) and σmin need to be evaluated.

The residual can be evaluated in O(Nh) operations. Let M denote the complexity of matrix-
matrix multiplication. To evaluate σmin at least O(NhM) are needed. This is can become too
expensive for our purpose.

In order to avoid the calculation of singular/eigenvalue for every µ two approximation strate-
gies are commonly used:

• (adaptive) interpolation,

• approximation by a sucessive constraint method (SCM).

More details about adaptive interpolation can be found in [QMN16; MN15; Neg+13]. For the
SCM approach, see [Huy+07; RHP07; MN15; Man12].

In case of affine parametric dependency, see Section 2.2.1, the calculation of the residuals
can be optimized further. Recall that

‖rh(µ,uN)‖2
Xh
−1 = ‖fh(µ)−Ah(µ)VuN‖2

Xh
−1

=fh(µ)TXh
−1fh(µ) + (Ah(µ)VuN)TXh

−1Ah(µ)VuN

− 2fh(µ)Xh
−1Ah(µ)VuN.

Given the affine parameter dependence, we obtain

‖rh(µ,uN)‖2
Xh
−1 =

Qf∑
q1=1

Qf∑
q2=1

θfq1(µ)θfq2(µ) fq1
h

TXh
−1fq2

h︸ ︷︷ ︸
Cq1,q2

+
Qa∑
q1=1

Qa∑
q2=1

θaq1(µ)θaq2(µ)uN(µ)T VTAh
q1TXh

−1Ah
q2V︸ ︷︷ ︸

Eq1,q2

uN(µ)

− 2
Qa∑
q1=1

Qf∑
q2=1

θq1
a (µ)θq2

f (µ)uN(µ)T VTAh
q1TXh

−1fq2
h︸ ︷︷ ︸

Dq1,q2

.

(2.90)

The quantities Cq1,q2 ∈ R, Eq1,q2 ∈ RN×N and Dq1,q2 ∈ RN are µ independent and need only to
be calculated once.

2.5 Implementation
For the experiments in Chapter 3 and 4 we implemented the RBM in Python using NGSolve
([Sch14]) and SciPy [JOP+01]. NGSolve is used to calculate FE solutions, SciPy to implement
error estimators and to solve the RB problems. The implementation is based on the contents of
the previous sections and the algorithms described in [QMN16].

The linear system (2.17) is solved using an iterative solver. The RB counterpart (2.25) is
solved by using LU factorization, see [GL13]. The stability constant βh is calculated using the
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Implicitly restarted Arnoldi iteration, see [LS96] and [LSY98]. The appendix also includes a short
introduction into the Arnoldi iteration, see Section A.3

To calculate the stability constant over the whole parameter space interpolation is used.
Linear interpolation is used for 1D problems, see e.g. Chapter 4. Interpolation by radial basis
function is used for higher dimensional problems, see e.g. Chapter 3 or Chapter 5.
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Chapter 3

Reduced basis methods for the Poisson
equation

In order to test the RBM we consider two instances of the Poisson problem. The Poisson problem
reads

findu ∈ V such that −∆u(µ) = g(µ) in Ω(µ). (3.1)

Equation (3.1) can be endowed with either Dirichlet or Neumann boundary conditions. The weak
formulation of (3.1) reads

findu ∈ V such that a(µ, u, v) = f(µ, v) ∀v ∈ V, ∀µ ∈ P, (3.2)

where

a(µ, u, v) =
∫

Ω(µ)
∇u · ∇v, (3.3)

f(µ, v) =
∫

Ω(µ)
g(µ)v. (3.4)

It can be shown that equation 3.2 fulfils the assumptions of Theorem 1, in particular the coercivity
and continuity conditions; see equations (2.2) and (2.3).

3.1 Internal heating
The first example, taken from [Ver03, Model Example 3], is that of an rectangular domain Ω
with an internal heat source. The shape of the domain is parametrized by µ ∈ R. For a given µ
the problem reads

findu ∈ V such that −∆u = 1
µ

in Ω(µ). (3.5)

Equation (3.5) is endowed with homogeneous Dirichlet boundary conditions

u = 0 on ∂Ω(µ).

The weak formulation of (3.5) reads

findu ∈ V such that a(µ, u, v) = f(µ, v) ∀v ∈ V (Ω(µ)). (3.6)

with

a(µ, u, v) =
∫

Ω(µ)
∇u · ∇v, (3.7)

f(µ, v) =
∫

Ω(µ)

v

µ
. (3.8)
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Figure 3.1: Solution to the internal heating problem for the parameter values µ = 0.5, µ = 1,
and µ = 2. The first three figures show the solution in the reference domain Ω. The last three
in the original domain Ω(µ).

The domain is parametrized by µ ∈ P with the parameter space denoted by P = R. We
reformulate the problem by mapping Ω(µ) into a reference domain Ω = [0, 1]2; for details see
[Ver03, Chapter 3]. The weak formulation of the reformulated problem reads

findu ∈ V such that a(µ, u, v) = f(v) ∀v ∈ V (Ω). (3.9)

with

a(µ, u, v) = µ
∫

Ω

∂u

∂x

∂v

∂y
+ 1
µ

∫
Ω

∂u

∂y

∂v

∂y
, (3.10)

f(v) =
∫

Ω
v. (3.11)

The bilinear form a(µ, ·, ·) depends on the parameter µ affinely with

a(µ, u, v) = θ(1)
a (µ)a1(u, v) + θ(2)

a a2(u, v), (3.12)

where

θ(1)
a (µ) = µ, a1(u, v) = ∂u

∂x

∂v

∂y
,

θ(2)
a (µ) = 1

µ
, a2(u, v) = ∂u

∂y

∂v

∂y
.

In this case the linear form f is independent of µ. In Figure 3.1 we depict the solution to
problem (3.5).
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Figure 3.2: Thermal block domain Ω for Bx = 3 and By = 3.

3.2 Thermal blocks
The second example is that of a thermal block taken from [RHP07, Section 6.1.1]. The problem
describes a square domain that is partitioned into BxBy subdomains, see Figure 3.2. Each region
di for i = 2..BxBy is assigned a conductivity µi. The conductivity of d1 is fixed at 1.

The problem is endowed with homogeneous Dirichlet boundary conditions on ΓhD, homoge-
neous Neumann on ΓhN and inhomogeneous Neumann

∂u

∂n
= 1 onΓiN . (3.13)

The weak formulation reads

findu ∈ V such that a(µ, u, v) = f(v) ∀v ∈ V, (3.14)

where

a(µ, u, v) =
BxBy−1∑
i=1

µi+1

∫
di+1
∇u · ∇v +

∫
d1
∇u · ∇v, (3.15)

f(v) =
∫

ΓiN
v. (3.16)

Thus the problem is parametrized with µ ∈ RBxBy−1. Moreover, (3.15) depends affinely on µ,
with

θ(1)
a (µ) = 1, a1(u, v) =

∫
d1
∇u · ∇v, (3.17)

θ(i)
a (µ) = µi−1 for i = 2 . . . BxBx, (3.18)

a(u, v)i =
∫
di−1
∇u · ∇v for i = 2 . . . BxBx ∀u, v ∈ V. (3.19)

The linear form f is independent of µ. In Figure 3.3 we depict two solutions to the thermal block
problem, for the parameter µ(1) and µ(2) with

µ(1) = (0.633, 0.003, 0.919, 12.789, 1.368, 6.832, 712.252, 10.077),
µ(2) = (0.049, 0.008, 35.889, 0.195, 4.427, 621.291, 252.26, 0.017).
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Figure 3.3: Two solutions to the thermal block problem for the parameter points µ(1)

and µ(2). µ(1) = (0.633, 0.003, 0.919, 12.789, 1.368, 6.832, 712.252, 10.077) and µ(2) =
(0.049, 0.008, 35.889, 0.195, 4.427, 621.291, 252.26, 0.017)

Parameter Internal heat Thermal block
h 0.025 0.025

#d.o.f. 1943 1985
polynomial degree 1 1

Table 3.1: Parameter for the FE discretisation of (3.9) and (3.14).

Parameter Internal heat Thermal block
emax 10−4 10−4

N 11 4
#samples for the interpolation of βh 50 50

#samples in the training set Ξ 500 500

Table 3.2: Parameter for constructing the RB spaces for problem (3.9) and (3.14).
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Figure 3.4: RB approximation error over the parameter space for the internal heat problem (3.9).

3.3 Numerical results
In order to test the performance of the RBM, we run several numerical experiments. The pa-
rameter of the underlying FE system are shown in Table 3.1. The RBM method is implemented
as described in Chapter 2. The RB spaces are constructed using the greedy algorithm, see
Section 2.4. The parameter that are used to construct the RB space are shown in Table 3.2.

Figure 3.4 shows the RB approximation error ‖uh − V uN‖V for the internal heat prob-
lem (3.9). The error is calculated over the whole parameter space P = [0.01, 100]. The RB-space
is constructed using the greedy algorithm, see Section 2.4.

The down spikes correspond to the selected snapshots. This highlights the local nature of RB
spaces.

In order to compare strategies different RB spaces are constructed. The dimension of the
space is kept fixed. The resulting spaces are used to approximate the solutions at different points
in the parameter space. At each point, the approximation error ‖uh−V uN‖V‖uh‖V

, is calculated and
averaged. The results are shown in Figure 3.5 and 3.6.

For the internal heat problem the spaces are constructed using the greedy algorithm (greedy),
snapshots at equidistant parameter points, snapshots at logarithmically distributed parameter
points (equi-log.) and snapshots at random parameter points (random). For the thermal blocks
problem only the greedy algorithm is used.

For some values of N the average approximation error of the equidistant space could not
be calculated. This is due to the linear dependence of snapshots, which lead to singular AN
matrices.

The approximation errors for the greedy and equi-logarithmic spaces show similar convergence
rates. For both spaces the error converges exponentially. This can be expected based on the
theory presented in Sections 2.3 and 2.4. Both spaces reach a point where the approximation
error does not decrease any further. For the equi-logarithmic spaces the lowest error is reached
with dimension N = 25, for the greedy spaces the lowest error is reached at N = 26. The
increase of the approximation error for higher values of N is due to the linear dependence of the
selected snapshots.

The greedy algorithm converges even faster for the thermal blocks problem. This is surprising
since the parameter space for the thermal blocks problem is of higher dimension compared to
the internal heat problem. This shows that a higher dimension of the parameter space does not
automatically lead to a higher dimensional RB space.

Table 3.3 shows the dimension of greedy RB spaces constructed for different parameter spaces.
All spaces are constructed using the same parameter for the greedy algorithm. The results show
that dimension of the RB space depends weakly on the length of the parameter space.

Based on the results we conclude that RBMs are an effective method to approximate solutions
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Figure 3.5: Average approximation error for different RB spaces for problem (3.9).
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Figure 3.6: Average approximation error for the RBM using the greedy algorithm for prob-
lem (3.14).

parameter space dimension
[0.1 : 10] 6

[0.01 : 100] 7
[0.001 : 1000] 7

Table 3.3: Parameter spaces and RB dimensions for problem (3.9)
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to coercive problems. This is in line with the theory and is also confirmed by other works [Ver03,
Chapter 3 and 4] or [Rov03, Chapter 3]. We acknowledge that the problems we have dealt
with so far are very simple. The RBM applied to a more involved problem might show different
behaviour and thus needs higher dimensional RB spaces. Furthermore, depending on the problem
the RBM could be more sensitive to changes of the parameter space; see for example [QMN16,
Section 3.8].
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Chapter 4

Reduced basis methods for the
Helmholtz equation

In order to test the performance of the RBM on noncoercive problems, two examples of the
Helmholtz equation are considered. One models the propagation of a plane wave, the second
the transmission/reflection of a wave in two fluids. The examples are taken from [BNP18] and
[KMW15].

Let k ∈ C and denote the domain by Ω ⊂ R2. The general form of the Helmholtz equation is

findu ∈ V such that −∆u− k2u = g(k) in Ω. (4.1)

Equation (4.1) can be endowed with either Dirichlet or Robin boundary conditions. V is either
H1

0 (Ω) or H1(Ω) depending on the choice of the boundary conditions. Also the functions in V
are complex valued. Further, we introduce the following norm (see [Mel95]): given w > 0,

‖v‖2
V,w = ‖∇v‖2

L2(Ω) + w2 ‖v‖2
L2(Ω) ∀v ∈ V. (4.2)

Define the set Λ = {λi}i∈N, where λi is the i-th Dirichlet-Laplace eigenvalue on Ω. Let ui be
the corresponding eigenfunction. We have∫

Ω
∇ui∇v = λi〈ui, v〉L2(Ω) ∀v ∈ V. (4.3)

Given a function g ∈ L2(Ω), the weak formulation of (4.1) reads

findu ∈ V such that
∫

Ω
∇u · ∇v − k2

∫
Ω
uv =

∫
Ω
g(k, ·)v̄ ∀v ∈ V. (4.4)

This defines the following bilinear and linear forms:

a(k, u, v) =
∫

Ω
∇u · ∇v − k2

∫
Ω
uv, (4.5)

f(k, v) =
∫

Ω
g(k, ·)v̄. (4.6)

Different from (3.2), the bilinear form a(k, ·, ·) is not coercive. Rather (4.5) fulfils the inf-sup
and continuity condition, see (2.10) and (2.3). Theorem 2 still ensures well posedness of the
weak formulation (4.4) for k2 6∈ Λ; see [QMN16].

Unlike in the coercive case, the inf-sup condition for the discrete space does not automatically
follow from the continuous space (see Section 2.1.2). Instead, it must be required explicitly that
the discrete FE space fulfils the inf-sup condition (see [Sch74]). This means that the space Vh
cannot be chosen arbitrary. It must be fine enough to allow the FE solutions to converge.

The sesquilinear form in (4.5) fulfils the affine parameter dependence. Hence,

a(k, u, v) = θ(1)
a a1(u, v) + θ(2)

a a2(u, v), (4.7)
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with

Qa = 2, Qf = 1,
θ(1)
a (k) = 1, θ(2)

a (k) = −k2.

As for the linear form f in (4.6) it depends on the function g(k, ·) whether the problem depends
affinely on the parameter or not.

Remark. When applying the RBM to the Helmholtz equation we have to take care that the
parameter space P does not contain any Dirichlet Laplace eigenvalue (P∩Λ = ∅). Further, we to
need ensure that the underlying FE discretisation is fine enough to approximate the FE solutions
for the max. wavenumber kmax = max(k) accurately. See [EM12], for the interplay between k
and h.

4.1 Plane wave
The first model problem for the Helmholtz equation is that of a travelling plane wave, where
the parameter is the wave number k. A wave travels through the domain Ω = (0, π) × (0, π)
along the direction d = (d1, d2) ∈ R2. We set the exact solution to uex = b(x)w(x), where
w(x) = e−iv〈d,x〉2 and b(x) = 16

π4x1x2(x1−π)(x2−π). The right-hand side is defined accordingly:

g(k, x) =−∆uex(x) + k2uex(x)

= 16
4π4 e

−iv〈d,x〉2
(
2ivd1

(
2x1x

2
2 − 2πx1x2 − πx2

2 + π2x2
)

+ 2ivd2
(
2x2

1x2 − πx2
1 − 2πx1x2 + π2x1

)
−
(
2x2

2 − 2πx1x2 + 2x2
1 − 2πx1

))
. (4.8)

We endow the Helmholtz equation with homogeneous Dirichlet boundary conditions and set
d = (cos(π6 ), sin(π6 )). In Figure 4.1 we depict the exact solution. The parameter interval is
P = [1, 12].

Since (4.8) does not exhibit affine parameter dependence, the offline-online procedure (see
Figure 2.1) can not be applied to the right-hand side. Instead, the right-hand side has to be
projected in the online stage.

4.2 Transmission/Reflection
The second problem is that of transmission/reflection of a plane wave through a fluid-fluid
interface. A plane wave eik〈d,(x,y)〉2 , travelling along d = (cos(θ), sin(θ)), through an interface
between two fluids with different refractive indices n1 < n2. We assume Ω = (−1, 1)2 to be the
domain. The fluids divide the domain horizontally in two different parts. One fluid occupies the
upper half, the other the lower half. The domain is shown in Figure 4.2.

The problem is parametrized through k, n1, n2. The resulting parameter space P is given as:
P = K × N1 × N2 where K ⊂ C and N1,N2 ⊂ N and k = p1, n1 = p2 and n2 = p3 for p ∈ P.
The problem we are interested in is:

findu ∈ V such that −∆u− p2
1ε

2
ru = 0 with εr(p, x, y) =

p2 if y < 0
p3 if y > 0

. (4.9)

For any angle 0 ≤ θ ≤ π
2 the exact solution to (4.9) is given by:

uex(p, x, y) =

T (p)ei〈K(p),(x,y)〉2 if y > 0
eip1p2〈d,(x,y)〉2 +R(p)eip1p2〈d,(x,−y)〉2 if y < 0

, (4.10)
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Figure 4.1: Exact solutions to (4.1) for the plane wave problem for different values of k.

with

K(p) = (p1p2d1,
√

(kp3)2 − (p1p2d1)2),

R(p) = p2d2 −K2

p2d2 +K2
,

T (p) = 1 +R(p).

Depending on the angle θ, the wave either decays for x2 > 0 or is refracted.
Equation (4.9) is endowed with Dirichlet boundary conditions that are taken from the exact

solution (4.10) i.e. u|∂Ω = uex|∂Ω. The exact solution, for different values of k, is shown in
Figure 4.3.

The weak formulation of (4.9) reads:

find u̇(p) ∈ V such that
∫

Ω
∇u̇(p, ·)∇v − p2

1

∫
Ω
ε2r(p, ·)u̇(p, ·)v̄ = p2

1

∫
Ω
ε2r(p, ·)wg(p, ·)v

∀v ∈ V, ∀p ∈ P, (4.11)

where gΩ(p) = uex(p)|∂Ω, wg(p) ∈ H1(Ω) is the unique harmonic extension of gΩ(p), i.e.
∆wg(p) = 0 in Ω and wg(p)|∂Ω = gΩ(p)|∂Ω, and u̇(p) = u(p) − wg(p). Equation (4.11)
defines the following bilinear and linear forms:

a(p, u̇, v) =
∫

Ω
∇u̇(p, ·) · ∇v − p2

1

∫
Ω
ε2r(p, ·)u̇(p, ·)v̄, (4.12)

f(p, v) = p2
1

∫
Ω
ε2r(p, ·)wg(p, ·)v. (4.13)

The linear form in 4.13 does not depend on the parameter p affinely .
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Figure 4.3: Exact solutions to problem (4.9).
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Parameter Plane wave Transmission/Reflection
h 0.1 0.05

d.o.f. 10483 18376
polynomial degree 3 3

Table 4.1: Parameter for the FE discretisation of the plane wave and the transmission/reflection
problem.

Parameter Plane wave Transmission/Reflection
emax 10−4 10−4

N 76 119
#samples for the interpolation of βh 50 50

#samples in the training set Ξ 500 500

Table 4.2: Parameter for constructing the RB spaces for the plane wave and the transmis-
sion/reflection problem.

4.3 Numerical results
The problems described in Sections 4.1 and 4.2 are discretised using the techniques described in
Chapter 2. For the FE approximation a triangular mesh is used. The parameter of the FE system
are shown in Table 4.1. The RB spaces are constructed using the greedy algorithm described in
Section 2.4. The parameter that are used are shown in Table 4.2. In case the problem depends
on more than one parameter, all parameter except k, are fixed and only k is varying. This means
for the transmission/reflection problem n1 and n2 are fixed as n1 = 1, n2 = 2. Unless otherwise
noted, k takes values from [kmin, kmax] = [1, 12].

For the analysis the weighted norm defined in (4.2) is used. The weight w is chosen to be
the center of the parameter interval [k2

min, k
2
max], w2 = k2

max−k2
min

2 + k2
min.

4.3.1 Approximation error
Figure 4.4 and 4.5 show the error of the FE and RB approximations. We can see that the RB
solution (uV ) is close to the FE solution (uh). The points with the lowest error coincide with the
selected snapshots. This highlights the local nature of RB spaces. In Figure 4.4 we can see that
the approximation error stays significantly below emax = 10−4. This hints that either the error
estimator is not effective enough, see Section 2.4.1, or that the maximum error is dominated by
high errors at only few parameter points. Interestingly this effect is less pronounced in the case
of the transmission/reflection problem, see Figure 4.5.

4.3.2 Comparison of different strategies
In order to compare the greedy algorithm with other strategies for selecting parameter points,
different RB spaces are constructed. Each RB space is used to calculate the approximation error
on a validation set. Figure 4.6 and 4.7 show the approximation error and the selected snapshots.
The error clearly shows a „local” approximation effect. For all strategies, the error is smallest in
proximity of the selected snapshots. Moreover, for all strategies the approximation error increases
with higher wave numbers.

Figure 4.8 and 4.9 show the convergence of different RB spaces. Each construction strategy
is used to construct a RB space of a given dimension. In order to measure the approximation
quality the average approximation error ‖uh−V uN‖V,w‖uh‖V,w

is calculated on a validation set.
In general all RB spaces show exponential convergence, as long as the dimension is greater

than a certain critical value. The equidistant snapshots perform almost as good as the snapshots
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Figure 4.4: Error of solutions to the plane wave problem from Section 4.1.

chosen by the greedy algorithm. Furthermore, the convergence of the greedy algorithm behaves
similar to a step function. The approximation error remains on the same order of magnitude, for
few dimensions, and then drops in order.

Surprisingly the approximation error for the equidistant, equi-logarithmic, and greedy spaces is
not monotonically decreasing. In the case of the greedy algorithm this is an indicator that selecting
the snapshot with the highest approximation error does not lead to a lower approximation error
for other solutions. In fact it might even increase the approximation error. The greedy algorithm,
as described in Section 2.4, tries to extend a current RB space VN by adding a new snapshot.
The new snapshot is chosen to be the snapshot where the approximation error using the space
VN is maximized. As the Figure 4.8 and 4.9 show this does not always lead to a decrease in
the average approximation error. This indicates that a snapshot where the approximation error is
high is not automatically a good choice for the next snapshot. An ideal greedy algorithm would
chosen the next snapshot in a way that the approximation error of VN+1, see Algorithm 2, is
minimized the most compared to all other choices for the next snapshot.

Compared with the results from Chapter 3 Figure 4.9 shows that noncoercive problems need
higher dimensional RB spaces. Interestingly the approximation error for the equidistant RB space
shows faster convergence than in the coercive case.

4.3.3 Robustness of the greedy algorithm
As detailed in Section 2.4 the greedy algorithm only provides a starting point for constructing RB
spaces. The choice of the error estimator, the training set, or the parameter space might influence
the resulting RB space. In order to test how each of these choices influences the resulting RB
spaces we run several tests.

In the first test we construct different RB spaces using training sets Ξ from different parameter
spaces P ⊂ [kmin, kmax]. For each RB space we enlarge the parameter interval by increasing kmax.
The intervals always start at kmin = 2. After the construction of the RB spaces we record their
dimension and compute the RB approximation error over the largest parameter interval ([2, 30]).
The result is shown in Figure 4.10 and Figure 4.11. The intervals boundaries are designated by
the vertical black lines. For this experiment the RB spaces are constructed using a maximal error
tolerance of emax = 10−3.

The results confirms the local nature of RB approximations. As soon as the parameter is
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Figure 4.5: Error of solutions to problem (4.9).

outside the initial interval, the solutions start to diverge.
Figure 4.12 and 4.13 show the selected snapshots. The snapshots are always spread across the

whole initial interval. Furthermore, most of the snapshots seem to be nested, in the sense that
in the overlapping regions the same snapshots are chosen as for short intervals. With increasing
wavenumber the snapshots are chosen in increasingly shorter intervals.

In Figure 4.14 and 4.15, the dimension of the RB spaces is shown for each interval length.
The dimension increases almost linearly with the interval length. This stands in contrast to
Theorem 8 and the results in Chapter 3. This reaffirms that noncoercive problems are more
difficult to treat.

At the beginning of the greedy algorithm, see Algorithm 2, an initial snapshot must be chosen.
In Figure 4.16 and 4.17, the selected snapshots for different choices of the initial snapshot are
shown. The initial snapshots are marked with a 1. The choice of latter snapshots is slightly
influenced by the initial snapshot.

In the next test, we fix a parameter interval [1, 12] and construct multiple RB spaces using
different training sets. The training sets are chosen by discretising the parameter interval using
different step sizes h. The constructed RB spaces are used to compute the average approximation
error over a validation set. In Figure 4.18 and 4.19 we depict the average error for the different
step sizes. There is no correlation between the grid size and the average error.

In order to test how the underlying FE discretisation influences the resulting RB space, we
construct two RB spaces, VN,1 and VN,2, using different FE spaces Vh,1 and Vh,2. The first FE
space Vh,1 is constructed with a maximal grid size of h1 = 0.1. The second FE space Vh,2 is
constructed using a maximal grid size h2 = 0.05. The resulting FE spaces are of dimension
dim(Vh,1) = 10483 and dim(Vh,2) = 41770. The considered parameter interval is k ∈ [2, 20].
Figure 4.20 shows the norm of the exact u and the FE solution for both FE spaces. We see that
the first FE space shows oscillations in the solutions for higher wave numbers.

Both FE spaces are used to construct RB spaces for the given parameter interval. The resulting
RB spaces VN,1 and VN,2 are of dimension dim(VV,1) = 231 and dim(VN,2) = 145 for the same
tolerance emax = 10−4. This shows that the dimension of RB spaces is not necessarily correlated
with the dimension of the underlying FE space. Furthermore, for the Helmholtz problem the
underlying FE space should accurately represent the solutions at all wavenumbers of interest.
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Figure 4.6: Comparison of the different construction strategies for RB spaces for the plane wave
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Figure 4.10: Comparison of different RB spaces for the plane wave problem from Section 4.1.
The RB are constructed using training sets Ξ taken from different intervals.
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Figure 4.11: Comparison of different RB spaces for the transmission/reflection problem (4.9).
The RB are constructed using training sets Ξ taken from different intervals.
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Figure 4.12: Selected snapshots to construct RB spaces for the plane wave problem from Sec-
tion 4.1. The spaces are constructed using training sets Ξ taken from different intervals.
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Figure 4.13: Selected snapshots to construct RB spaces for the transmission/reflection prob-
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Figure 4.14: Dimensions of RB spaces depending on the interval length kmax−kmin for the plane
wave problem from Section 4.1.
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Figure 4.15: Dimensions of RB spaces depending on the interval length kmax − kmin for the
transmission/reflection problem (4.9).
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Figure 4.16: Snapshots selected by the greedy algorithm using different starting points for the
plane wave problem from Section 4.1. The initial snapshot is marked by 1.
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Figure 4.17: Snapshots computed by the greedy algorithm using different starting points for the
transmission/reflection problem (4.9). The initial snapshot is marked by 1.
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Figure 4.18: Average error for different RB spaces for the plane wave problem from Section 4.1.
The RB spaces are constructed using training sets that are discretisations of the interval [1, 12]
with differing step sizes h.
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Figure 4.19: Average error for different RB spaces for the transmission/reflection problem (4.9).
The RB spaces are constructed using training sets that are discretisations of the interval [1, 12]
with step sizes h.
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Figure 4.20: Norm of the exact solution and the FE solutions to the plane wave problem from
Section 4.1.

The numerical results presented in this chapter confirm that the RBM can be applied to
noncoercive problems. Compared to the results for coercive problems, see Chapter 3, higher
dimensional spaces are needed and the approximation error is generally higher. This is in line
with the theory and the results in [QMN16, Chapter 2] and [Rov03, Chapter 5]. Moreover, the
results show that in the case of the Helmholtz equation the underlying FE space should be chosen
in such a way that all solutions can be represented accurately. It should be noted that there exist
extensions of the RBM that might improve the mentioned problems e.g. the least-squares reduced
basis method. For more details we refer to [Rov03, Chapter 3] and [QMN16, Chapter 5].
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Chapter 5

Reduced basis methods for inverse and
control problems

Two scenarios in which RBMs are useful are inverse and optimal control problems. An optimal
control problem consists of a control µ ∈ P, a state u ∈ V , and a output z ∈ Z. The state is
given as solution to the state problem that is parametrized by the input. The output is a function
of the state z = o(u).

Take the Helmholtz equation as an example. The control µ is the wavenumber k taken from
the control space P = R or P = C. The state problem is given by equation (4.1). The state
space V is either V = H1 or V = H1

0 . The state uk is a solution to (4.1). The output could be
any function depending on uk, i.e. o : V → Z. Let

s(k) = uk such thatuk solves (4.1) for wavenumber k = µ (5.1)

be the solution map of the Helmholtz problem. The solution map connects the control to the
state. Given a value of the control variable the output can be obtained by composition of s and o.
Hence the input-output mapping c is given by c = o ◦ s. Given some data z the control problem
reads

findµz such that c(µz) = z. (5.2)

Thus we want to find c−1 = s−1 ◦ o−1. Depending on s and o c−1 does not exist or is not well-
defined. To circumvent this problem, optimal control problems are treated as an optimization
problem. Instead of inverting c, we look for an µz that minimizes a cost function J : P→ R

µ∗ = arg min
µ∈P

J(µ). (5.3)

Common choices for J , see [FZ03] or [Qua14, Chapter 17], are

J(µ) = 1
2 ‖c(µ)− z‖2 ∀µ ∈ P (5.4)

or for a α ≤ 0

J(µ) = 1
2 ‖c(µ)− z‖2 + α

2 ‖µ‖
2
P ∀µ ∈ P. (5.5)

One approach to solve (5.3) numerically is the Model - Discretisation - Control approach, see
[FZ03]. In this approach, the state problem is discretised and the discretised problem is solved
when evaluating the cost function. Equation (5.3) can then be solved by a numerical optimization
method, e.g. Quasi-Newton, see [NW06] or CG, see [HS52]. For a short introduction into the
Quasi-Newton and CG method see Appendix A.1 and A.2.

If the state problem is a PDE, RBMs can be used to solve the state problem more efficiently.
Instead of solving a problem in a high dimensional space the RBM solves the problem in a lower
dimensional space. This leads to the following procedure:
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1. discretise the state problem using the FEM;

2. construct a RB space based on the FE space;

3. find the optimal control µz for the given data.

Optimal control problem arise in a wide range of applications. A frequent example is parameter
estimation. Given an output find an input that produces a similar output. This can be used to
determine material properties. The control represents the unknown material properties. The
state problem describes the inner dynamics of the system. The known output corresponds to
physical measurements. By solving the optimal control problem, the material properties can be
determined from the measurements.

5.1 Transmission/Reflection
In order to demonstrate the outlined procedure we considered three model problems. The first
model problem is the transmission/reflection problem, see Section 4.2, with the domain Ω =
(−0.5, 0.5)2. The state problem is given by equation (4.9). The control parameter corresponds
to the parameter of the problem. Hence the control is given by µ = (k, n1, n2). The solution to
(4.9) is taken as the output.

The parameter n1 and n2 could be seen as material properties that need to be determined.
The parameter k fixes the frequency. Taking the coefficient vector as the output is an idealistic
assumption. In any real context it would be impossible to measure the complete solution of the
state problem.

5.2 Admittance identification
The second example is taken from [VH09]. It models the (simplified) interior of a car. Inside the
car, a loudspeaker emits sound waves that interact with a damping material at the bottom (ΓD)
of the car door. The loudspeaker is located at the point xq. The interaction is modelled by the
Helmholtz equation in the domain Ω. The damping material makes up a part of the boundary
designated as ΓD. The domain is depicted in Figure 5.1.

The damping material is characterized by its impedance z ∈ C. In order to have a linear
model we try to estimate the admittance a ∈ C. The admittance is given by a = 1

z
. The outward

normal vector is denoted by n. The speed of sound is denoted by c and the density of the ambient
air by ρ0 ∈ R. Given the (material) constants

c = 343.799m
s
, k = 2πf

c
, ρ0 = 1.19985 kg

m3 , ω = 2πf = ck, (5.6)

the state problem is defined by

findu ∈ V such that −∆u− k2u = g inΩ, (5.7)
i

ρ0ω

∂u

∂n
= 0 onΓH , (5.8)

i

ρ0ω

∂u

∂n
= au onΓD. (5.9)

The source term g is given by

g(f, x) = 1
5e

iπ(f−200)
50 e−50‖x−xq‖2

2 . (5.10)

Hence, the problem is parametrized by µ = (k, a).
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Figure 5.1: The domain and boundaries for problem (5.7).

A weak formulation of (5.7) together with (5.8) and (5.9) reads, see [Vol10],

findu ∈ V such that a(µ, u, v) = f(µ, v) ∀v ∈ V, ∀µ ∈ P, (5.11)

where

a(µ, u, v) =
∫

Ω
∇u∇v − µ2

1

∫
Ω
uv − iρ0ωµ2

∫
ΓD
uv, (5.12)

f(µ, v) =
∫

Ω
g(cµ1, ·)v. (5.13)

Both (5.12) and (5.13) depend on the parameter µ affinely. Thus the offline-online approach for
building RB spaces can be used, see Section 2.2.1.

The output c(µ) is the evaluation of the solution to (5.7) at six different measurement points.
Hence, given the measurement points pi ∈ R2 for i = 1 . . . 6 the output c(µ) is given as

c(µ) = (u(p1), . . . , u(p6)), (5.14)

where u solves (5.7) for k = µ1 and a = µ2.

5.3 Reduction of the engine noise
The third example is taken from [CHY07]. The problem describes the propagation of noise from
an airplane engine. We assume the problem to be axisymmetric along the x-axis. The problem
is described by

∆u+ k2u = 0 inΩ, (5.15)
u = g onΓ1, (5.16)(

∂u

∂n
+ χu

)
= 0 onΓ2, (5.17)

∂u

∂n
= 0, on Γ3 ∪ Γ5, (5.18)(

∂u

∂n
+ iku

)
= 0 onΓ4. (5.19)

(5.20)

The engine noise is modelled by the Dirichlet boundary conditions (5.16). The boundary parts
Γ2 Γ3 represent the engine enclosing. The material of the engine enclosing is represented by
χ ∈ C in (5.17). The boundary Γ4 is assumed to be far enough from the noise source such that
Sommerfeld radiation conditions can be imposed. The boundary Γ5 is along the symmetry axis.
The domain of the problem is depicted in Figure 5.3. The well-posedness of (5.15) is proven in
[CHY07]. The engine noise g is given by g(x, y) = 20.0 + e3ysin(10πy).
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Figure 5.2: Exact solutions to problem (5.7).
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Figure 5.3: The domain and boundaries for problem (5.15).
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Figure 5.4: FE solution uh to (5.21) for χ = 0 and k = 2π.

The problem is parametrized by µ = (k, χ) ∈ C2. The weak formulation of (5.7) reads

findu ∈ V such that a(µ, u, v) = −a(µ,wg, v) ∀v ∈ V, ∀µ ∈ P, (5.21)

where

a(µ, u, v) =
∫

Ω
∇u∇v − µ2

1

∫
Ω
uv + χ

∫
Γ2
uv + ik

∫
Γ4
uv, (5.22)

wg|Γ2 = g. (5.23)

Since the bilinear form a(µ, ·, ·) in (5.22) depends affinely on the parameter µ we use the offline-
online approach for building RB spaces. In Figure 5.4 we depict the solution to (5.21) for χ = 0.

The aim of the current problem is not to find the best control given an observation but to
find a value for χ such that the amount of noise emitted from the engine is minimal. Hence, the
cost function J(µ) is identical to the output. Given two constants α ≤ 0 and β ≤ 0, the output
c(µ) for the optimal control problem is given by

c(µ) = J(µ) = α
∫

Ω
u2 + β

∫
Ω
|∇u|2 , (5.24)

with u such that u solves the state problem (5.15) for k = µ1 and χ = µ2. In Figure 5.5 we
depict the cost function for k = 2π and χ = a+ bi for a, b ∈ [−6 : 6].

5.4 Numerical results
In order to test whether RBMs can be used instead of the FE discretisation to solve the state
problem during the optimisation of the cost function, we run several tests. At the beginning of
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Figure 5.5: Value of the cost function J(µ) defined in (5.24) for µ = (2π, χ).

Parameter Transmission/reflection Admittance identification Engine noise
h 0.05 0.05 0.1

d.o.f. 4729 7142 11356
polynomial degree 3 2 3

Table 5.1: Parameter for the FE discretisation of the transmission/reflection, admittance identi-
fication and engine noise problem.

each test, we construct a FE discretisation of the state problem. The FE discretisation is used
to construct a RB space. We construct the RB space using the greedy algorithm described in
Section 2.4. Once the RB space is constructed, we select the control inputs µ? ∈ P randomly.
For each selected control input µ?, we calculate the output c(µ?) using the FE discretisation.
Using the previously calculated output c(µ?), we minimize the cost function 5.4 and calculate
an estimated control input µ. Afterwards, we calculate the error ‖µ

?−µ‖P
‖µ‖P

between the selected
control input µ? and the estimated µ.

The parameter of the FE discretisation and the dimension of the computed RB space are
shown in Table 5.1. Note that the RB space for the transmission/reflection and the admittance
identification problem are constructed for varying wavenumbers, whereas the RB space for the
engine noise problem is constructed for a fixed wavenumber k = 2π.

Usually the cost function (5.4) is not convex and very flat, see Figure 5.5 for an example.
In order to improve the convergence, when using gradient based optimization methods, the cost
function needs to be normalized. One possible normalization consists in adding a term to the
cost function that measures the distance to an initial guess µ′ ∈ P for the optimal solution. The
resulting cost function is

J(µ) = 1
2 ‖c(µ)− z‖2 + ‖µ′ − µ‖2

P ∀µ ∈ P. (5.25)

In the numerical tests of the transmission/reflection and admittance identification problem the
initial guess is derived from the selected control input.

In Figure 5.6 we depict the error in the estimated values for n1 and n2 from the transmis-
sion/reflection problem. It can be seen that the n1 and n2 can be estimated accurately. Further,
we can see that the error increases with higher wavenumbers.

In contrast the error for the admittance identification problem shown in Figure 5.7 does not
increase with higher frequencies (wavenumber). Instead is only spikes at certain frequencies.
However, the tests are run at lower wavenumbers, i.e. kmin = 2π200Hz

c
≈ 3.66 and kmax =

2π500Hz
c
≈ 9.14.
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Parameter Transmission
Reflection

Admittance
identification Engine noise

emax 10−4 10−4 10−4

N 95 105 13
#samples for the
interpolation of βh

100 76 50

#samples in the training set Ξ 1100 2709 500

Table 5.2: Parameter for constructing the RB space for the transmission/reflection, admittance
identification and engine noise problem.
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Figure 5.6: Error of the predicted values n1 and n2 for the inverse transmission/reflection problem
from Section 5.1 at different wavenumbers. The exact solution is denoted by n?1 and n?2.
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Figure 5.7: Error of the predicted admittance a for the admittance identification problem (5.7)
at different frequencies. The exact solution is denoted by a?.

α = 1, β = 0 α = 1, β = 1
χh −3.51236919 + 1.3803579i −3.3137602 + 1.561295i
χN −3.51237423 + 1.3803595i −3.3137628 + 1.561293i

|χh−χN |
|χh|

1.309× 10−6 8.25× 10−7

J(χh) 1159.5394896 53355.9240432
J(χN) 1159.5394850 53355.9238456

Table 5.3: Results of the minimization of the cost function (5.21) for the engine noise problem.

Both experiments show that the RBM can be used in parameter estimation problems or much
more general in optimization procedures that involve FE discretisations. Moreover, the improved
efficiency of RBM allow for the use of global optimisation methods eliminating the need for
normalization of the cost functional.

In case of the engine noise problem, we minimize the cost function (5.24) in two rounds. In
the first one, we use the FEM to solve the state problem (5.21) and calculate the minimal χh.
In the second one, we use the RBM to solve (5.21) and calculate the minimal χN . The cost
function in (5.24) is parametrized by α and β. The test are run for α = 1 and β either 0 or 1.
The initial guess for both optimizations is χ0 = 0. The results are shown in Table 5.3. The error
introduced by the RBM is negligible.
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Chapter 6

Summary and conclusions

The aim of this thesis was to test the reduced basis method (RBM) with particular focus on
noncoercive problems. In Chapter 2 we reviewed the relevant theory about RBMs. We intro-
duced the offline-online procedure for the efficient implementation of the RBM. Furthermore, we
introduced equi-logarithmic reduced spaces and the greedy algorithm, and discussed the imple-
mentation of an error estimator for the greedy algorithm. Based on the theoretical results, we
expect that RBMs can be applied to coercive as well as noncoercive problems. We also expect
that RBMs offer better convergence when applied to coercive problems. The numerical results
in Chapter 3 and Chapter 4 support these assumptions.

In Chapter 3, we tested two parametric Poisson problems. The first problem is that of a
thermal block that is heated from the inside. The geometry of the block is parametrized by the
parameter µ. The second problem is that of a thermal block that is divided into subregions of
different conductivity µi. The block is heated from the bottom side.

The presented tests confirm that the RBM is effective when applied to coercive problems. The
approximation error is small and the RB spaces show rapid exponential convergence. Moreover,
the dimension of the RB space VN is largely unaffected by the size of the parameter space P.

In Chapter 4, we tested the RBM on two noncoercive problems governed by the Helmholtz
equation. The first one models a travelling plane wave where the parameter is the wavenumber.
The second one models the transmission or reflection of a wave that travels through an interface
between two fluids with different refractive indices n1 and n2.

The results suggest that RBMs can be used with noncoercive problems. The observed conver-
gence is still exponential, but slower than in the coercive case, resulting in the need of using higher
dimensional reduced spaces to reach the same accuracy. The greedy algorithm itself performs
not as well as in the coercive case. The snapshots chosen by the greedy algorithm sometimes
increase the maximum approximation error instead of decreasing it. This suggest that the greedy
algorithm could be improved.

We compared different RB spaces that are constructed for problems parametrized by the
wavenumber varying in different intervals [kmin, kmax]. We keep kmin fixed and increase kmax. In
contrast to the results from Chapter 3, we see that the dimension of the reduced basis space VN
increases linearly with the interval length kmax − kmin. In addition, similar snapshots are chosen
by the greedy algorithm for the overlapping regions.

Moreover, the investigation of the greedy algorithm showed that the algorithm is unaffected
by different starting points and the selected training set.

However, the RBM is affected by oscillations of the underlying FE discretisation. Oscillations
exhibited by the FE solutions also affect the resulting reduced basis (RB) spaces. While the
resulting RB space is able to approximate the oscillations the resulting RB space is of higher
dimension. Thus diminishing the efficiency of the RBM.

The results we obtained in Chapter 5 show that the RBM is an effective method that can
be employed in the context of optimal control or parameter estimation. Optimal control and
parameter estimation problems consist of a parametrized state problem and an output function.
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The output function maps the solution of the state problem to an output. Given an output, we
want to estimate the input to the state problem that lead to the given output. The procedures
used to solve such problems present a good opportunity to use RBMs. In order to determine the
original input, we need to solve the state problem many times.

In order to test how the RBM performs in parameter estimation and optimal control prob-
lems, we considered three problems. The first one is the transmission/reflection problem from
Chapter 4. The goal is to estimate the refractive indices n1 and n2. The second one is an
idealized model of car door and a loudspeaker. The bottom of the car door consists of a damping
material of unknown impedance/admittance. The loudspeaker emits sound that interacts with
the damping material. The sound pressure is measured at six different points. The aim is to
estimate the impedance/admittance of the damping material from the measurements. The third
problem models the sound emitted from an airplane engine. The engine is enclosed by a damping
material of unknown impedance/admittance. The goal is to determine an impedance/admittance
such that the noise emitted from the engine is minimized.

For the transmission/reflection and the admittance identification problem we select inputs
randomly and use the finite element method (FEM) to solve the corresponding state problem.
In the next step, we estimate the original input by solving the optimal control problem using the
RBM. The results suggest that the RBM can be used as a substitute for the FEM, significantly
improving the efficiency when solving optimal control and parameter estimation problems.

In case of the engine noise problem the goal is to determine an impedance value for the engine
enclosing that minimizes the noise emitted by the engine. In the first step, we use the FEM to
find the optimal value for the impedance, in the second step we use the RBM to find the optimal
value for the impedance. Afterwards we compare the solutions and calculate the error. We see
that the RBM estimate is close to the FEM estimate. Confirming that RBM can be used in the
context of parameter estimation and optimal control.

The increased efficiency of RBMs might even allow the use of global optimization procedures
that eliminate the need for initial guesses of solutions.

However, these results are only an indication for the performance of the RBM applied to
different problems. The performance of the RBM highly depends on the particular problem. This
is already evident in the theory. Theorem 9 relates the convergence of the greedy algorithm to
the decay of so-called the n-width of the continuous spaces or discrete spaces. However, it is not
trivial to show the n-width decay, see e.g. [QMN16, Section 5.4].

Furthermore, in Chapter 4 we only considered one dimensional parameter spaces. This is an
idealistic assumption although the results from Chapter 3 and 5 suggest that RBMs can be used
with higher dimensional parameter spaces.

There exist several extensions of the RBM that are not considered here. This includes Petrov
Galerkin reduced basis methods or RBMs based on proper orthogonal decomposition. For more
details we refer to [QMN16].
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Appendix A

Review of numerical methods

In the following sections we review some of the numerical methods that are used in the Chapters
2, 3, 4, and 5. The descriptions are based on [NW06] and [GL13].

A.1 Quasi-Newton methods
Quasi-Newton methods are methods for minimizing functions f : Rn → R. They are based on
Newton methods. Newton methods are a variant of line search methods. Line search methods are
iterative methods that generate successive points xk ∈ Rn that converge to a (local) minimum.
Given a step length αk ∈ Rn and a direction pk ∈ Rn, the xk are generated by

xk+1 = xk + αkpk. (A.1)

Assume the function f is twice continuously differentiable, i.e. f ∈ C2, and denote the Hesse
matrix at the point x ∈ Rn by Hf (x) ∈ Rn×n, H(x)i,j = ∂2f

∂xi∂xj
(x). The Newton method

corresponds to taking pk = −Hf (xk)−1∇f(xk) and αk = 1. This leads to the following iteration

ak+1 = xk −Hf (xk)−1∇f(xk). (A.2)

In practice the step length αk is optimized by inexact line search methods based on the Wolfe
conditions, see [NW06, Chapter 2].

One problem of standard Newton methods is that Hf (xk) needs to be calculated and inverted
at each step of the method. This can pose a problem if the second derivatives are not available or
the Hesse matrix is not invertible. Quasi-Newton methods circumvent this by approximating the
Hessian Hf (xk) by a symmetric positive definite matrix Bk ∈ Rn×n. Using Bk the Quasi-Newton
methods minimizes a quadratic model mk : Rn → R

mk(p) = f(xk) +∇f(xk)Tp+ 1
2p

TBkp. (A.3)

of the function f . Instead of computing the matrix Bk at each step, Bk, is updated at each step
to form Bk+1. In order keep the model function mk accurate, we impose the following conditions
for all Bk, k = 1 . . . N

∇mk+1(−αkpk) = ∇f(xk), (A.4)
∇mk+1(0) = ∇f(xk+1). (A.5)

Since ∇mk+1(p) = ∇f(xk+1) +Bk+1p condition (A.5) is fulfilled automatically. Condition (A.4)
becomes

∇f(xk+1)− αBk+1pk = ∇f(xk). (A.6)
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Hence

∇f(xk+1)−∇f(xk) = αBk+1pk. (A.7)

Setting sk = xk+1 − xk = αkpk and yk = ∇f(xk+1)−∇f(xk) we can rewrite (A.7) as

Bksk = yk. (A.8)

The equation is known as as the secant equation. In order for (A.8) to hold, sk and yk need to
fulfil the curvature condition

sTk yk > 0. (A.9)

(A.9) is automatically fulfilled for convex functions. For nonconvex functions, (A.9) is fulfilled if
the step length αk fulfils the strong Wolfe conditions, see [NW06, Chapter 6].

The conditions (A.4) and (A.5) are not sufficient to define Bk uniquely. Thus, we require
that Bk+1 is as close as possible to Bk. This yields the following problem

Bk+1 = min
B∈Rn×n

‖B −Bk‖ such thatB = BT andBsk = yk. (A.10)

Depending on the norms used in (A.10), different solutions arise. Given a weight matrix W ∈
Rn×n

W = Ḡ1, (A.11)

where Ḡ denotes the average Hessian

Ḡ =
∫ 1

0
Hf (xk + ταkpk)dτ. (A.12)

We define the norm

‖A‖W =
∥∥∥W 1

2AW
1
2
∥∥∥ , (A.13)

where ‖·‖F denotes the Frobenius norm ‖A‖2
F = ∑n

i=1
∑n
j=1A

2
ij. Given the norm (A.13), the

unique solution to (A.10) is given by

Bk+1 =
(
I − yks

T
k

yTk sk

)
Bk

(
I − sky

T
k

yTk sk

)
+ yky

T
k

yTk sk
. (A.14)

Equation (A.14) is also called the DFP update formula.
A further improvement on equation (A.14) is instead of updating Bk we update the inverse

Hk = B−1
k directly. This leads to following problem

Hk+1 = min
H∈Rn×n

‖H −Hk‖ such thatH = HT andHyk = sk. (A.15)

Reusing the norm defined in (A.13), we derive

Hk+1 =
(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
+ sks

T
k

yTk sk
. (A.16)

Equation (A.16) is also called the BFGS formula. The resulting algorithm is shown in Algorithm 3.
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Algorithm 3 The quasi Newton algorithm.
Given f , ∇f , x0, H0 and a tolerance etol
Set k ← 0
while ‖∇f(xk)‖ > etol do

pk+1 ← Hkpk (A.17)
sk ← xk+1 − xk (A.18)
yk ← ∇f(xk+1)−∇f(xk) (A.19)

Hk+1 ←
(
I − sky

T
k

yTk sk

)
Hk

(
I − yks

T
k

yTk sk

)
+ sks

T
k

yTk sk
, (A.20)

k ← k + 1 (A.21)

end while

A.2 Conjugate gradient method
The CG method was developed originally to solve a linear system

Ax = b, (A.22)

where A ∈ Rn×n is symmetric and positive definite, and x, b ∈ Rn. CG methods work by
generating a conjugate set of vectors pk ∈ Rn {p0, p1, . . . pn−1}. A set s ⊂ Rn of vectors is said
to be conjugate with respect to a symmetric positive definite matrix A ∈ Rn×n if

pTi Apj = 0 1 ≤ i, j ≤ n, i 6= j. (A.23)

Denote the residual of the linear system (A.22) by rk:

rk(x) = Axk − b. (A.24)

Given a set {p0, p1, . . . pn−1} of conjugate vectors, we generate iterates xk ∈ Rn by

xk+1 = xk + αkpk. (A.25)

The step length αk is given by

αk = −r(xk)
Tpk

pTkApk
. (A.26)

The xk generated by (A.25) converge to the solution to the linear system (A.22) in at most n
steps; see [NW06, Theorem 5.1].

The important ingredient of the CG method is the ability to generate conjugate vectors pk
based on the previous vector pk−1. The next conjugate direction is chosen by

pk = −r(xk) + βkpk−1, (A.27)

where

βk = rTkApk−1

pTk−1Apk−1
. (A.28)

Noting that (A.26) and (A.28) can be rewritten as

αk = r(xk)T r(xk)
pTkApk

, (A.29)

βk+1 = r(xk+1)T r(xk+1)
r(xk)T r(xk)

, (A.30)
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Algorithm 4 The CG algorithm for solving linear systems.
Given x0, A, and b
Set p0 ← −r(x0), k ← 0
while rk 6= 0 do

αk ←
r(xk)T r(xk)
pTkApk

, (A.31)

xk+1 ← xk + αkpk (A.32)

βk+1 ←
r(xk+1)T r(xk+1)
r(xk)T r(xk)

(A.33)

pk+1 ← −r(xk+1) + βk+1pk (A.34)
k ← k + 1 (A.35)

end while

this leads to the Algorithm shown in 4.
The CG can also be viewed as an optimization algorithm. Solving the linear system (A.22) is

equivalent to minimizing

φ(x) = 1
2x

TAx− bTx. (A.36)

Moreover, the residual r is infact the gradient of (A.36)

∇φ(x) = r(x) = Ax− b. (A.37)

Further, by noting that αk is chosen to be the minimizer of φ along pk we derive Algorithm 5.
The minimization problem in (A.38) can be carried out by an inexpensive line search; see [NW06,
Chapter 2 and Chapter 5].

Algorithm 5 The CG algorithm for solving minimization problems.
Given x0, φ, and ∇φ
p0 ← −∇φ(x0), k ← 0
while ∇φ(x0) 6= 0 do

αk ← min
α∈R

φ(xk + αpk) (A.38)

xk+1 ← xk + αkpk (A.39)

βk+1 ←
∇φ(xk+1)T∇φ(xk+1)
∇φ(xk)T∇φ(xk)

(A.40)

pk+1 ← −∇φ(xk+1) + βk+1pk (A.41)
k ← k + 1 (A.42)

end while

A.3 Restarted Arnoldi iteration
The Arnoldi iteration is a method for calculating the extremal eigenvalues of a matrix A ∈ Rn×n.
At every step the Arnoldi iteration computes a tridiagonal matrix Tk ∈ Rk×k whose extremal
eigenvalues approximate the extremal eigenvalues of the original matrix A. For brevity we consider
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only the case where A is symmetric. In this case, the Arnoldi iteration reduces to the Lanczos
iteration.

In order to introduce the Lanczos iteration, we introduce the Rayleigh quotient r : Rn → R

r(x) = xTAx

xTx
∀x 6= 0. (A.43)

The maximum and minimum of r correspond to maximum and minimum eigenvalues of A λn(A)
and λ1(A); see [GL13, Theorem 8.1.2]. Further, let {qi} ⊂ Rn be a sequence of orthogonal
vectors and define Qj = [q1| . . . |qj]. Moreover, let

Mj = λ1(QT
j AQ) = max

y 6=0

yTQT
j AQj

yTy
= max
‖y‖2=1

r(Qjy) ≤ λ1(A), (A.44)

mj = λn(QT
j AQ) = min

y 6=0

yTQT
j AQj

yTy
= min
‖y‖2=1

r(Qjy) ≥ λn(A). (A.45)

Our goal is to find qi such that Mj and mj become increasingly closer to λ1(A) and λn(A).
Let uj ∈ span(q1, . . . , qj) be such that Mj = r(uj). We want to ensure that qj+1 is chosen in
such a way that Mj+1 > Mj. This can be done by ensuring that

∇r(uj) ∈ span(q1, . . . , qj+1). (A.46)

The gradient ∇r(x) is given by

∇r(x) = 2(Ax− r(x)x)
xTx

. (A.47)

We note that ∇r(x) ∈ span(x,Ax). Hence (A.46) can always be fulfilled, if we choose

span(q1, . . . , qj) = span(q1, Aq1, . . . , A
j−1qj) = K(A, q1, j). (A.48)

The space K(A, q1, j) is also called the Krylov subspace. We define the Krylov matrix

K(A, q1, n) = [q1, Aq1, . . . A
n−1q1]. (A.49)

We define the tridiagonal matrix T = QTAQ and note that

K(A, q1, n) = Q[e1, T e1, . . . T
n−1e1] (A.50)

is the QR factorization of K(A, q1, n). This ensures that A can be tridiagonalized with an
orthogonal matrix Q whose first column is q1. By setting T = QTAQ and

T =



α1 β1 · · · 0
β1 α2

. . . ...
. . . . . . . . .

... . . . . . . βn−1
0 · · · βn−1 αn


(A.51)

and writing AQ = TQ we derive

Aqk = βk−1qk−1 + αkqk + βkqk+1. (A.52)

By rearranging and setting αk = qTkAqk we derive the iteration shown in Algorithm 6. For details
see [GL13, Chapter 9.]. The iteration produces a matrix T whose extremal eigenvalues converge
to the extremal eigenvalues of A. The key benefit of Algorithm 6 is that not all n αk and βk need
to be calculated. Instead the iteration will be terminate much earlier resulting in a T ∈ Rnt×nt

with nt << n.
The restarted Arnoldi iteration improves on the Lanczos iteration by generalizing the Lanczos

iteration to non symmetric A and by improving the starting vector q1 through multiple iterations.
For more details about how the Lanczos iteration can be generalized to nonsymmetric A and
about the restarted Arnoldi iteration we refer to [GL13; LS96; LSY98].
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Algorithm 6 The Lanczos iteration for computing the tridiagonal matrix T .
Given q1
Set r0 ← q1, q0 ← 0 and k ← 0
while βj 6= 0 do

qk+1 ←
rk
βk

(A.53)

αk+1 ← qTk+1Aqk+1 (A.54)
rk+1 ← (A− αkI)qk − βkqk (A.55)
βk+1 ← ‖rk‖2 (A.56)

k ← k + 1 (A.57)

end while
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Acronyms

CG conjugate gradient. 4, 45, 57, 58

FE finite element. 1, 2, 4, 6, 8, 11, 12, 17, 20, 21, 26, 27, 30, 31, 34, 36, 44, 46, 49, 50, 52,
53, 61

FEM finite element method. 1, 5–10, 13, 46, 52, 54, 61

MOR model order reduction. 5, 61

PDE partial differential equation. 5, 8, 45, 61

PG-RB Petrov Galerkin reduced basis. 54

POD proper orthogonal decomposition. 54

RB reduced basis. 2–4, 6–8, 11–14, 17–21, 26–29, 34–44, 46, 47, 49–51, 53, 61

RBM reduced basis method. 5–8, 11–14, 21, 23, 24, 27, 29–31, 44, 45, 49, 52–54, 61

SCM sucessive constraint method. 21
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